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Nonparametric Regression: Intuition

Let’s get back to conditional means and consider a general functional
form:

y = µ (x) + ε

The basic idea behind non-parametric estimation is to avoid imposing
any functional form on the relationships between variables.

How do we go about this in practice? On board: what if x is discretely
distributed?
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Nearest Neighbor Interpolation
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Nearest neighbor interpolation: µ (x) is the the value of y associated
with the nearest observed value of x
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Linear Interpolation

0 1 2 3 4 5
x0

1

2

3

4

5

6
y

Linear interpolation: µ (x) is a weighted average of two points

There are more sophisticated interpolation techniques, especially when it
comes to multidimensional x . See kriging.
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Local Averaging: Intuition

y = µ (x) + ε

The above interpolation techniques were just about “filling in” the value
of the function between observations.

When we have lots of data, interpolation makes less sense.
I When observations are close together, the difference between them might

have more to do with noise in ε than an actual change in µ (x)
I µ (x) is likely to start looking very jagged if we interpolate between lots of

close-together observations.

This brings us to nonparametric estimators that still fit µ (x) based on
the nearby observations, but average over observations to some extent.
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Local Averaging

Our estimate of µ (·) can be thought of as weighted mean functions:

µ̂ (x∗) =
n∑
i

wi (x∗|x) yi

with
∑n

i wi (x∗|x) = 1.

Note that this is not just a weighted average, but a function that takes
a different weighted average at different points. The weights depend on
at what value of x∗ we are evaluating the function.

What’s the w function for the linear interpolation example above?
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Kernel

Kernel estimation starts with a kernel function

K (x∗|xi , h)

that allows you to generate the weights from the data. Note: the kernel
just depends on the point in question x∗ and a single observation xi , but
the weights ultimately depend on all the observations.

Kernels involve a bandwidth h that, rougly speaking, determines how
close xi should be to x∗ for xi to get some weight in wi (x∗|x). The
bandwidth can be adjusted (and optimally selected).
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Logistic Kernel

The logistic kernel function is is

K (x∗|xi , h) = Λ (vi ) (1 – Λ (vi ))

where

vi =
xi – x∗

h

and

Λ (v) =
exp (v)

1 + exp (v)

Note that as xi becomes far from x∗, either Λ (vi )→ 0 or
(1 – Λ (vi )) (vi )→ 0, but either way the kernel goes to zero as the
observations become far apart.

Other kernels have K (x∗|xi , h) = 0 when |xi – x∗| > h/2.
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From Kernel to Weights

µ̂ (x∗) =
n∑
i

wi (x∗|x) yi

Given a kernel function K (x∗|xi , h), the weights are

wi (x∗|x, h) =
K (x∗|xi , h)∑n
i=1 K (x∗|xi , h)
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Source: Wikipedia
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Bandwidth Selection

The bandwidth h needs to be set somehow, and it’s important.

If the bandwidth is too large, we risk estimating µ (x∗) based on using
observations xi where µ (x∗) 6= µ (xi ). BIAS

If the bandwidth is too small, we risk averaging over very few
observations in which case our estimate of µ̂ (x∗) will be very imprecise.
VARIANCE

There is a large literature on bandwidth selection. The main idea is to
minimize the expected gap between the fitted function and true function
(mean square error). This takes some work to do formally, but in some
cases there are straightforward formulas for the optimal bandwidth.

In practice, the “eyeball test” can provide a good starting point. When
plotting your data and µ̂ (x), does seem to wiggle around to try to fit
individual observations? Are there some patterns in the data that µ̂ (x)
fails to capture because it smooths them out?
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Further Comments

Kernels become difficult-to-impossible to implement with
high-dimensional data. Other nonparametric techniques are better suited
(splines, LASSO).

Any version of non-parametric estimation should do something to
balance bias and variance. The broader issue is model selection, which is
important for parametric as well as non-parametric estimation.
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